Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Heliyon ; 9(12): e22784, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38090003

RESUMO

Kamishoyosan (KSS) and Kamikihito (KKT) have been traditionally prescribed for neuropsychiatric symptoms in Japan. However, the molecular mechanism of its effect is not elucidated enough. On the other hand, it has been reported that lipopolysaccharide derived from Porphyromonas gingivalis (P. g LPS) is involved not only in periodontal disease but also in the systemic diseases such as psychiatric disorders via neuroinflammation. Here, we investigated the molecular mechanism of KSS and KKT treatment by LPS-induced neuropathy using PC-12 cells. When P. g LPS was administrated during the NGF treatment, the KCC2 expression was decreased in PC-12 cells. P. g LPS treatment also decreased the WNK and phospho SPAK (pSPAK) expression and enhanced GSK-3ß expression that negatively regulates WNK-SPAK signaling. Moreover, when KSS or KKT was administrated before P. g LPS treatment, the decrease of KCC2, WNK and pSPAK was rescued. KSS and KKT treatment also rescued the enhancement of GSK3ß expression by P. g LPS treatment. Furthermore, KSS, KKT and/or oxytocin could rescue behavioral abnormalities caused by P. g LPS treatment by animal experiments. These effects were not shown in the Goreisan treatment, which has been reported to act on the central nervous system. These results indicate that KSS and KKT are candidates for therapeutic agents for neural dysfunction.

2.
Jpn Dent Sci Rev ; 59: 431-438, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38022385

RESUMO

Patients with neurological diseases, such as schizophrenia, tend to show low K+-Cl- co-transporter 2 (KCC2) levels in the brain. The cause of these diseases has been associated with stress and neuroinflammation. However, since the pathogenesis of these diseases is not yet fully investigated, drug therapy is still limited to symptomatic therapy. Targeting KCC2, which is mainly expressed in the brain, seems to be an appropriate approach in the treatment of these diseases. In this review, we aimed to discuss about stress and inflammation, KCC2 and Gamma-aminobutyric acid (GABA) function, diseases which decrease the KCC2 levels in the brain, factors that regulate KCC2 activity, and the possibility to overcome neuronal dysfunction targeting KCC2. We also aimed to discuss the relationships between neurological diseases and LPS caused by Porphyromonas gingivalis (P. g), which is a type of oral bacterium. Clinical trials on oxytocin, sirtuin 1 (SIRT1) activator, and transient receptor potential cation channel subfamily V Member 1 activator have been conducted to develop effective treatment methods. We believe that KCC2 modulators that regulate mitochondria, such as oxytocin, glycogen synthase kinase 3ß (GSK3ß), and SIRT1, can be potential targets for neurological diseases.

3.
Int. arch. otorhinolaryngol. (Impr.) ; 27(3): 461-470, Jul.-Sept. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1514254

RESUMO

Abstract Introduction Finding biomarkers for highly lethal cancers is a priority. Objective The current study was designed to understand the clinical significance of vascular endothelial growth factor (VEGF), latent membrane protein 1 (LMP1), and tumor necrosis factor-α (TNF-α) expression as the biomarkers, and evaluate their correlation with each other, in nasopharyngeal carcinoma (NPC) in the province of Guilan, North of Iran. Methods Gene expression was evaluated in 25 formalin-fixed paraffin-embedded (FFPE) blocks from cases of confirmed NPC and 20 FFPE samples of non-NPC by quantifying messenger ribonucleic acid (mRNA) and protein levels, using real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) methods, respectively. Furthermore, the correlations among the protein levels of different genes, along with the patients' demographic characteristics were assessed. Results Our findings on mRNA and protein levels demonstrated that the expression of the LMP1 gene in the NPC group was significantly elevated compared with that of the non-NPC group. In addition, the protein levels in the NPC group indicated a positive and significant correlation between LMP1 and VEGF expression. It was noted that both protein and mRNA levels showed no significant differences in the expression of TNF-α and VEGF genes between the NPC and control groups. Furthermore, there was no significant relationship between the expression of these proteins and the demographic characteristics of NPC patients. Conclusion Overall, a significant increase in LMP1 expression was observed in NPC patients, which may serve as a diagnostic biomarker for NPC. Also, LMP1 might be involved in NPC progression by inducing VEGF gene expression.

4.
Int Arch Otorhinolaryngol ; 27(3): e461-e470, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37564471

RESUMO

Introduction Finding biomarkers for highly lethal cancers is a priority. Objective The current study was designed to understand the clinical significance of vascular endothelial growth factor (VEGF), latent membrane protein 1 (LMP1), and tumor necrosis factor-α (TNF-α) expression as the biomarkers, and evaluate their correlation with each other, in nasopharyngeal carcinoma (NPC) in the province of Guilan, North of Iran. Methods Gene expression was evaluated in 25 formalin-fixed paraffin-embedded (FFPE) blocks from cases of confirmed NPC and 20 FFPE samples of non-NPC by quantifying messenger ribonucleic acid (mRNA) and protein levels, using real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) methods, respectively. Furthermore, the correlations among the protein levels of different genes, along with the patients' demographic characteristics were assessed. Results Our findings on mRNA and protein levels demonstrated that the expression of the LMP1 gene in the NPC group was significantly elevated compared with that of the non-NPC group. In addition, the protein levels in the NPC group indicated a positive and significant correlation between LMP1 and VEGF expression. It was noted that both protein and mRNA levels showed no significant differences in the expression of TNF-α and VEGF genes between the NPC and control groups. Furthermore, there was no significant relationship between the expression of these proteins and the demographic characteristics of NPC patients. Conclusion Overall, a significant increase in LMP1 expression was observed in NPC patients, which may serve as a diagnostic biomarker for NPC. Also, LMP1 might be involved in NPC progression by inducing VEGF gene expression.

5.
Hum Cell ; 36(4): 1441-1450, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36961656

RESUMO

Despite recent therapeutic advancements, cancer remains one of the leading causes of death worldwide, with mitochondrial dysfunction being associated with cancer initiation and progression, along with chemotherapeutic resistance and ferroptotic cell death failure; however, the significance of mitochondria in various cancer types remains a matter of debate for the moment. The aim of this study is to ascertain the outcome of transferring healthy mitochondria into the aggressive and rapidly proliferating prostate cancer (PC-3) cells and afterwards evaluate the efficacy of combination therapy with or without the ferroptosis inducer erastin. In this sense, normal mitochondria were first isolated from human umbilical cord-derived mesenchymal stem cells, human umbilical vein endothelial cells, and human embryonic kidney cells and were later transferred into PC-3 cells and rhodamine 6G-treated PC-3 cells exhibiting mitochondrial dysfunction. Next, cell proliferation and sensitivity to cisplatin were measured using Cell Counting Kit-8 and the Malondialdehyde Assay Lipid Peroxidation Kit, respectively, along with ferroptotic damage. Transferring the healthy mitochondria into PC-3 cells was observed to increase cell proliferation and rescue the cisplatin-induced cell death, but not the erastin-induced ferroptosis, as in mitochondrial transfer effectively enhanced erastin-mediated ferroptosis in PC-3 cells. Hence, the introduction of healthy mitochondria into the highly aggressive and proliferating cancer cells would be deemed a brand new therapeutic strategy for a variety of cancers.


Assuntos
Ferroptose , Neoplasias , Masculino , Humanos , Cisplatino/farmacologia , Células PC-3 , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo
6.
Hum Cell ; 36(1): 41-61, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36445534

RESUMO

Numerous factors are implicated in the onset and progression of ageing and neurodegenerative disorders, with defects in cell energy supply and free radicals regulation designated as being the main functions of mitochondria and highly accentuated in plentiful studies. Hence, analysing the role of mitochondria as one of the main factors implicated in these disorders could undoubtedly come in handy with respect to disease prevention and treatment. In this review, first, we will explore how mitochondria account for neurodegenerative disorders and ageing and later will draw the various pathways contributing to mitochondrial dysfunction in their distinct way. Also, we will discuss the deviation-countering mechanisms, particularly mitophagy, a subset of autophagy known as a much larger cellular defence mechanism and regulatory system, along with its potential therapeutic effects. Last but not least, we will be highlighting the mitochondrial transfer experiments with animal models of neurodegenerative disorders.


Assuntos
Mitocôndrias , Doenças Neurodegenerativas , Animais , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Envelhecimento/genética , Autofagia/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia
7.
Int Immunopharmacol ; 110: 109055, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35853277

RESUMO

Adoptive transfer of T-cell receptor (TCR)-engineered T cells has been successful in mediating favorable clinical outcomes. TCR-engineered T cells can be applied for targeting cancers whose associated antigens are intracellular and presented through major histocompatibility complexes (MHC). The mispairing of the exogenous TCR chains with the endogenous TCR chains leads to functionally impaired TCR-engineered T cells. The CRISPR/Cas9 genome-editing system can be utilized for the knockout of the endogenous TCR in T cells before introducing the exogenous TCR chains. In this study, we used the lentiviral delivery of CRISPR/Cas9 for disrupting the expression of the endogenous TCR in the Jurkat cell line. Next, an exogenous TCR targeting human leukocyte antigen (HLA)-A*0201-restricted New York esophageal squamous cell carcinoma 1 (NY-ESO-1) peptide was transduced into the TCR-knockout (KO) Jurkat cells. Further, we assessed lentiviral transduction efficacy using tetramer assay and evaluated the functionality of the NY-ESO-1-specific TCR-engineered T cells by quantifying the cell surface expression of CD69 upon co-cultivation with peptide-pulsed T2 cells. We successfully knocked out the endogenous TCR in âˆ¼40% of the Jurkat cells. TCR-KO cells were selected and subjected to express NY-ESO-1-specific TCRs using lentiviral vectors. Flow cytometry analysis confirmed that up to 55% of the cells expressed the transgenic TCR on their surface. The functionality assay demonstrated that >90% of the engineered cells expressed CD69 when co-cultured with peptide-pulsed T2 cells. Conclusively, we developed a pipeline to engineer Jurkat cells using the state-of-the-art technique CRISPR/Cas9 and generated TCR-engineered cells that can become activated by a tumor-specific antigen.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Antígenos de Neoplasias , Sistemas CRISPR-Cas , Humanos , Células Jurkat , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
8.
Med Oncol ; 39(9): 130, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35716323

RESUMO

Glioblastoma multiforme (GBM) is a fatal brain tumor in adults with a bleak diagnosis. Expansion of immunosuppressive and malignant CD4 + FoxP3 + GITR + regulatory T cells is one of the hallmarks of GBM. Importantly, most of the patients with GBM expresses the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO). While IDO1 is generally not expressed at appreciable levels in the adult central nervous system, it is rapidly stimulated and highly expressed in response to ongoing immune surveillance in cancer. Increased levels of immune surveillance in cancer are thus related to higher intratumoral IDO expression levels and, as a result, a worse OS in GBM patients. Conversion of the important amino acid tryptophan into downstream catabolite known as kynurenines is the major function of IDO. Decreasing tryptophan and increasing the concentration of immunomodulatory tryptophan metabolites has been shown to induce T-cell apoptosis, increase immunosuppressive programming, and death of tumor antigen-presenting dendritic cells. This observation supported the immunotherapeutic strategy, and the targeted molecular therapy that suppresses IDO1 activity. We review the current understanding of the role of IDO1 in tumor immunological escape in brain tumors, the immunomodulatory effects of its primary catabolites, preclinical research targeting this enzymatic pathway, and various issues that need to be overcome to increase the prospective immunotherapeutic relevance in the treatment of GBM malignancy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Humanos , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase , Estudos Prospectivos , Triptofano/metabolismo
9.
Life Sci ; 304: 120704, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714703

RESUMO

AIMS: Lipocalin 2 (Lcn2) is an antioxidant-related protein upregulated in various cellular stress conditions, especially cancer. In this study, we abrogated Lcn2 expression in MDA-MB-231 breast cancer cells using the CRISPR/Cas9 technology and evaluated its effect on cellular proliferation, migration, and ferroptotic cell death. MAIN METHODS: Validated human Lcn2 CRISPR/Cas9 knockout (KO) and homology-directed repair (HDR) plasmids were co-transfected into MDA-MB-231 breast cancer cells. Lcn2 gene knockout was confirmed at the transcriptional and protein levels using reverse transcription (RT)-PCR and enzyme-linked immunosorbent assay (ELISA). Cell proliferation was measured using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cytotoxicity assay was performed in the presence or absence of erastin, cisplatin (CDDP), and ferrostatin-1 using the CCK-8 method. Ferroptosis level was measured using the malondialdehyde assay lipid peroxidation kit. The migration capacity of the cells was also evaluated using the scratch assay. KEY FINDINGS: Targeting Lcn2 using CRISPR/Cas9 reduced cellular proliferation and migration capability, and elevated the vulnerability of MDA-MB-231 cells to cisplatin. Furthermore, Lcn2 expression loss effectively promoted erastin-mediated ferroptosis in MDA-MB-231 cells. SIGNIFICANCE: Inhibition of Lcn2 is a potentially useful strategy for sensitizing MDA-MB-231 tumor cells to ferroptotic cell death.


Assuntos
Neoplasias da Mama , Ferroptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Feminino , Ferroptose/genética , Humanos , Lipocalina-2/genética , Piperazinas
10.
Stem Cell Rev Rep ; 18(8): 2709-2739, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35505177

RESUMO

Major breakthroughs and disruptive methods in disease treatment today owe their thanks to our inch by inch developing conception of the infinitive aspects of medicine since the very beginning, among which, the role of the regenerative medicine can on no account be denied, a branch of medicine dedicated to either repairing or replacing the injured or diseased cells, organs, and tissues. A novel means to accomplish such a quest is what is being called "medical biowaste", a large assortment of biological samples produced during a surgery session or as a result of physiological conditions and biological activities. The current paper accentuating several of a number of promising sources of biowaste together with their plausible applications in routine clinical practices and the confronting challenges aims at inspiring research on the existing gap between clinical and basic science to further extend our knowledge and understanding concerning the potential applications of medical biowaste.


Assuntos
Medicina Regenerativa , Humanos
11.
Hum Cell ; 35(4): 972-994, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35415781

RESUMO

Despite the recent advances in cancer therapy, cancer chemoresistance looms large along with radioresistance, a major challenge in dire need of thorough and minute investigation. Not long ago, cancer cells were reported to have proven refractory to the ferroptotic cell death, a newly discovered form of regulated cell death (RCD), conspicuous enough to draw attention from scholars in terms of targeting ferroptosis as a prospective therapeutic strategy. However, our knowledge concerning the underlying molecular mechanisms through which cancer cells gain immunity against ferroptosis is still in its infancy. Of late, the implication of non-coding RNAs (ncRNAs), including circular RNAs (circRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) in ferroptosis has been disclosed. Nevertheless, precisely explaining the molecular mechanisms behind the contribution of ncRNAs to cancer radio/chemotherapy resistance remains a challenge, requiring further clarification. In this review, we have presented the latest available information on the ways and means of regulating ferroptosis by ncRNAs. Moreover, we have provided important insights about targeting ncRNAs implicated in ferroptosis with the hope of opening up new horizons for overcoming cancer treatment modalities. Though a long path awaits until we make this ambitious dream come true, recent progress in gene therapy, including gene-editing technology will aid us to be optimistic that ncRNAs-based ferroptosis targeting would soon be on stream as a novel therapeutic strategy for treating cancer.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Morte Celular/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/terapia , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética
12.
Peptides ; 150: 170734, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34974081

RESUMO

Inflammation, especially neuroinflammation, which is caused by stress, leads to central nervous system (CNS) dysfunction. Because lipopolysaccharides (LPSs) cause neuroinflammation, we investigated the effect of LPSs to CNS. In PC-12 cells, LPSs derived from oral bacteria reduced the expression of KCC2, a Cl- transporter. LPS derived from P. gingivalis (P. g) administered to rat primary cultured cells also reduced the KCC2 expression. However, LPSs derived from E. coli did not reduce the KCC2 expression. LPS treatment activated TLR4, IL-1ß, and REST gene expressions, which led to KCC2 inactivation in PC-12 cells. The mechanism of KCC2 has been shown to play an important role in brain maturation, function (such as the GABA switch), and behavioral problems, we investigated the GABA function. We found that the GABA function was changed from inhibitory to excitatory by the LPS derived from P. g treatment. We demonstrated that the GSK3ß also involved in the KCC2 reduction by LPS treatment. We show that oxytocin rescued the reduction in KCC2 expression caused by LPSs by inhibiting GSK3ß signaling but vasopressin could not. Considered together, our results indicate that the LPSs from oral bacteria but not the LPS from E. coli increase the risk for brain disorders and oxytocin might be a candidate to overcome the abnormal behavior caused by brain disorders such as psychiatric disorders.


Assuntos
Encefalopatias , Simportadores , Animais , Células Cultivadas , Escherichia coli/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Ocitocina/metabolismo , Ocitocina/farmacologia , Células PC12 , Ratos , Simportadores/genética , Simportadores/metabolismo , Ácido gama-Aminobutírico
13.
Mol Biol Rep ; 49(2): 931-941, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34741711

RESUMO

BACKGROUND: Hematopoietic stem cell (HSC) transplantation is considered a possible treatment option capable of curing various diseases. The aim of this study was the co-culturing of mesenchymal stem cell (MSC) spheres with HSCs under hypoxic condition to enhance the proliferation, self-renewal, stemness, and homing capacities of HSCs. METHODS AND RESULTS: HSCs were expanded after being subjected to different conditions including cytokines without feeder (Cyto), co-culturing with adherent MSCs (MSC), co-culturing with adherent MSCs + hypoxia (MSC + Hyp), co-culturing with MSCs spheres (Sph-MSC), co-culturing with MSCs spheres + hypoxia (Sph-MSC + Hyp), co-culturing with MSC spheres + cytokines (Sph-MSC + Cyto). After 10 days, total nucleated cell (TNC) and CD34+/CD38- cell counts, colony-forming unit assay (CFU), long-term culture initiating cell (LTC-IC), the expression of endothelial protein C receptor (EPCR), nucleostemin (NS), nuclear factor I/X (Nfix) CXCR4, and VLA-4 were evaluated. The TNC, CD34+/CD38- cell count, CFU, and LTC-IC were higher in the Sph-MSC + Hyp and Sph-MSC + Cyto groups as compared with those of the MSC + Hyp group (P < 0.001). The expanded HSCs co-cultured with MSC spheres in combination with hypoxia expressed more EPCR, CXCR4, VLA-4, NS, and Nfix mRNA. The protein expression was also more up-regulated in the Sph-MSC + Cyto and Sph-MSC + Hyp groups. CONCLUSION: Co-culturing HSCs with MSC spheres under hypoxic condition not only leads to higher cellular yield but also increases the expression of self-renewal and homing genes. Therefore, we suggest this approach as a simple and non-expensive strategy that might improve the transplantation efficiency of HSCs.


Assuntos
Técnicas de Cocultura/métodos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Hipóxia Celular/fisiologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura/economia , Análise Custo-Benefício , Citocinas/metabolismo , Sangue Fetal/citologia , Humanos , Receptores CXCR4
14.
Curr Cancer Drug Targets ; 22(2): 108-125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34856903

RESUMO

Ferroptosis is a non-apoptotic mode of Regulated Cell Death (RCD) driven by excessive accumulation of toxic lipid peroxides and iron overload. Ferroptosis could be triggered by inhibiting the antioxidant defense system and accumulating iron-dependent Reactive Oxygen Species (ROS) that react with polyunsaturated fatty acids in abundance. Emerging evidence over the past few years has revealed that ferroptosis is of great potential in inhibiting growth and metastasis and overcoming tumor cell resistance. Thus, targeting this form of cell death could be perceived as a potentially burgeoning approach in cancer treatment. This review briefly presents the underlying mechanisms of ferroptosis and further aims to discuss various types of existing drugs and natural compounds that could be potentially repurposed for targeting ferroptosis in tumor cells. This, in turn, will provide critical perspectives on future studies concerning ferroptosis-based cancer therapy.


Assuntos
Ferroptose , Neoplasias , Morte Celular , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo
15.
Life Sci ; 286: 120051, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34666039

RESUMO

AIMS: To overcome radioresistant cancer cells, clinically relevant radioresistant (CRR) cells were established. To maintain their radioresistance, CRR cells were exposed 2 Gy/day of X-rays daily (maintenance irradiation: MI). To understand whether the radioresistance induced by X-rays was reversible or irreversible, the difference between CRR cells and those without MI for a year (CRR-NoIR cells) was investigated by the mitochondrial function as an index. MAIN METHODS: Radiation sensitivity was determined by modified high density survival assay. Mitochondrial membrane potential (Δψm) was determined by 5,5',6,6'-tetrachloro-1,1', tetraethylbenzimidazolocarbo-cyanine iodide (JC-1) staining. Rapid Glucose-Galactose assay was performed to determine the shift in their energy metabolism from aerobic glycolysis to oxidative phosphorylation in CRR cells. Involvement of prohibitin-1 (PHB1) in Δψm was evaluated by knockdown of PHB1 gene followed by real-time PCR. KEY FINDINGS: CRR cells that exhibited resistant to 2 Gy/day X-ray lost their radioresistance after more than one year of culture without MI for a year. In addition, CRR cells lost their radioresistance when the mitochondria were activated by galactose. Furthermore, Δψm were increased and PHB1 expression was down-regulated, in the process of losing their radioresistance. SIGNIFICANCE: Our finding reveled that tune regulation of mitochondrial function is implicated in radioresistance phenotype of cancer cells. Moreover, as our findings indicate, though further studies are required to clarify the precise mechanisms underlying cancer cell radioresistance, radioresistant cells induced by irradiation and cancer stem cells that are originally radioresistant should be considered separately, the radioresistance of CRR cells is reversible.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Tolerância a Radiação/fisiologia , Biomarcadores Farmacológicos , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Membranas Mitocondriais/fisiologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas , Tolerância a Radiação/efeitos da radiação , Raios X/efeitos adversos
16.
Life Sci ; 285: 119958, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534562

RESUMO

Ferroptosis is a new type of non-apoptotic regulated cell death (RCD) driven by unrestricted lethal lipid peroxidation, which is totally distinct from other forms of RCD in genetic and biochemical characteristics. It is generally believed that iron dependency, malfunction of the redox system, and excessive lipid peroxidation are the main hallmarks of ferroptosis. Accumulating pieces of evidence over the past few years have shown that ferroptosis is tightly related to various types of diseases, especially cancers. Ferroptosis has recently attracted great attention in the field of cancer research. A plethora of evidence shows that employing ferroptosis as a powerful weapon can remarkably enhance the efficacy of tumor cell annihilation. Better knowledge of the ferroptosis mechanisms and their interplay with cancer biology would enable us to use this fashionable tool in the best way. Herein, we will briefly present the relevant mechanisms of ferroptosis, the multifaceted relation between ferroptosis and cancer, encompassing tumor immunity, overcoming chemoresistance, and epithelial to mesenchymal transition. In the end, we will also briefly discuss the potential approaches to ferroptosis-based cancer therapy, such as using drugs and small molecules, nanoparticles, mitochondrial targeting, and photodynamic therapy.


Assuntos
Ferroptose/fisiologia , Neoplasias , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Ferroptose/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia
17.
Genes (Basel) ; 12(9)2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-34573330

RESUMO

Mitochondria are very important intracellular organelles because they have various functions. They produce ATP, are involved in cell signaling and cell death, and are a major source of reactive oxygen species (ROS). Mitochondria have their own DNA (mtDNA) and mutation of mtDNA or change the mtDNA copy numbers leads to disease, cancer chemo/radioresistance and aging including longevity. In this review, we discuss the mtDNA mutation, mitochondrial disease, longevity, and importance of mitochondrial dysfunction in cancer first. In the later part, we particularly focus on the role in cancer resistance and the mitochondrial condition such as mtDNA copy number, mitochondrial membrane potential, ROS levels, and ATP production. We suggest a therapeutic strategy employing mitochondrial transplantation (mtTP) for treatment-resistant cancer.


Assuntos
DNA Mitocondrial/fisiologia , Longevidade/fisiologia , Mitocôndrias/fisiologia , Mutação , Neoplasias/terapia , Trifosfato de Adenosina/metabolismo , Transplante de Células/métodos , DNA Mitocondrial/genética , Humanos , Mitocôndrias/transplante , Doenças Mitocondriais/genética , Neoplasias/metabolismo , Neoplasias/patologia , Tolerância a Radiação/genética
18.
ACS Synth Biol ; 10(10): 2715-2724, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34550680

RESUMO

Ex vivo engineering of organs that uses decellularized whole organs as a scaffold with autologous stem cells is a potential alternative to traditional transplantation. However, one of the main challenges in this approach is preparing cytocompatible scaffolds. So far, high-precision and specific evaluation methods have not been developed for this purpose. Cell-based biosensors (CBBs) are promising tools to measure analytes with high sensitivity and specificity in a cost-effective and noninvasive manner. In this paper, using the NF-κB inducible promoter we developed a CBB for residual detergent detection. Proximal and core sections of the inducible promoter, containing NF-κB binding sequence, are designed and cloned upstream of the reporter gene (secreted alkaline phosphatase (SEAP)). After transfection into HEK293 cells, stable and reliable clones were selected. After confirmation of induction of this gene construct by sodium dodecyl sulfate (SDS), the stability and function of cells treated by qPCR and SEAP activity were measured. This biosensor was also used to evaluate the cytocompatibility of decellularized tissue. Results showed that the developed biosensor could detect very small amounts of SDS detergent (3.467 pM). It has the best performance 8 h after exposure to detergent, and its stability in high passage numbers was not significantly reduced. Applying this biosensor on decellularized tissues showed that SEAP activity higher than 4.36 (U/L) would lead to a viability reduction of transplanted cells below 70%. This paper presents a novel method to evaluate the cytocompatibility of decellularized tissues. The developed CBB can detect residual detergents (such as SDS) in tissues with high sensitivity and efficiency.


Assuntos
Técnicas Biossensoriais/instrumentação , Detergentes/análise , Alicerces Teciduais/química , Células HEK293 , Humanos , Espécies Reativas de Oxigênio/metabolismo
19.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361070

RESUMO

In cancer therapy, radioresistance or chemoresistance cells are major problems. We established clinically relevant radioresistant (CRR) cells that can survive over 30 days after 2 Gy/day X-ray exposures. These cells also show resistance to anticancer agents and hydrogen peroxide (H2O2). We have previously demonstrated that all the CRR cells examined had up-regulated miR-7-5p and after miR-7-5p knockdown, they lost radioresistance. However, the mechanism of losing radioresistance remains to be elucidated. Therefore, we investigated the role of miR-7-5p in radioresistance by knockdown of miR-7-5p using CRR cells. As a result, knockdown of miR-7-5p increased reactive oxygen species (ROS), mitochondrial membrane potential, and intracellular Fe2+ amount. Furthermore, miR-7-5p knockdown results in the down-regulation of the iron storage gene expression such as ferritin, up-regulation of the ferroptosis marker ALOX12 gene expression, and increases of Liperfluo amount. H2O2 treatment after ALOX12 overexpression led to the enhancement of intracellular H2O2 amount and lipid peroxidation. By contrast, miR-7-5p knockdown seemed not to be involved in COX-2 and glycolysis signaling but affected the morphology of CRR cells. These results indicate that miR-7-5p control radioresistance via ROS generation that leads to ferroptosis.


Assuntos
Ferroptose , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Bucais/patologia , Tolerância a Radiação , Espécies Reativas de Oxigênio/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial , Neoplasias Bucais/genética , Neoplasias Bucais/radioterapia , Transdução de Sinais , Células Tumorais Cultivadas
20.
Mol Biol Rep ; 48(9): 6375-6385, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34426902

RESUMO

BACKGROUND: The poor survival rate and undesirable homing of transplanted stem cells are the major challenges in stem cell therapy. Addressing the challenge would improve the therapeutic efficacy of these cells. Dimethyl fumarate (DMF) is an anti-inflammatory drug that exerts its effects through the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Therefore, its cytoprotective effects on human adipose-derived MSCs (hASCs) against various oxidative stresses have been investigated in this study. METHODS AND RESULTS: hASCs were cultured with different concentrations of DMF to evaluate the cytotoxicity of DMF on hASCs using Cell Counting Kit-8 (CCK-8). Besides, the migration ability of the cells after DMF treatment was evaluated using the Transwell method. Furthermore, the expression of HO-1 and NQO-1 was determined using RT-PCR. The cytoprotective effects of DMF on hASCs against the oxidative stress caused by H2O2 and Ultra Violet (UV) were evaluated by assessing cell proliferation and apoptosis. Our results demonstrated that under oxidative stress conditions induced by H2O2 and UV, DMF increased the survival rate and proliferation of the cells and prevented apoptosis. Moreover, the expression of HO-1 and NQO-1 was upregulated in hASCs pretreated with DMF which confirms the activation of the Nrf2 pathway. However, DMF significantly decreased migration in hADSCs (P < 0.0001). CONCLUSION: Our findings indicate that DMF enhances the proliferation capability and viability of hASCs and prevents their apoptosis in harsh stressful microenvironments. However, the applicability of DMF as a cytoprotective factor for the augmentation of hASCs requires in-depth preclinical and clinical studies.


Assuntos
Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Fumarato de Dimetilo/farmacologia , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tecido Adiposo/citologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Heme Oxigenase-1/genética , Humanos , Peróxido de Hidrogênio/efeitos adversos , Células-Tronco Mesenquimais/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos da radiação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Raios Ultravioleta/efeitos adversos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA